I2C интерфейс: описание на русском. Контакты Преобразование i2c в can программно

Интерфейс I2C (или по другому IIC) — это достаточно широко распространённый сетевой последовательный интерфейс, придуманный фирмой Philips и завоевавший популярность относительно высокой скоростью передачи данных (обычно до 100 кбит/с, в современных микросхемах до 400 кбит/с), дешевизной и простотой реализации.

1) Физика .

Физически сеть представляет собой двухпроводную шину, линии которой называются DATA и CLOCK (необходим ещё и третий провод — земля, но интерфейс принято называть двухпроводным по количеству сигнальных проводов). Соответственно, по линии DATA передаются данные, линия CLOCK служит для тактирования. К шине может быть подключено до 128 абонентов, каждый со своим уникальным номером. В каждый момент времени информация передаётся только одним абонентом и только в одну сторону.

Устройства I2C имеют выход с "открытым коллектором". Когда выходной транзистор закрыт — на соответствующей линии через внешний подтягивающий резистор устанавливается высокий уровень, когда выходной транзистор открыт — он притягивает соответствующую линию к земле и на ней устанавливается низкий уровень (смотрите рисунок). Резисторы имеют номинал от нескольких килоОм до нескольких десятков килоОм (чем выше скорость — тем меньше номинал резисторов, но больше энергопотребление). На рисунке треугольниками на входе показано, что входы высокоомные и, соответственно, влияния на уровни сигналов на линиях они не оказывают, а только "считывают" эти уровни. Обычно используются уровни 5В или 3,3В.

2) Логика .

Любое устройство на шине I2C может быть одного из двух типов: Master (ведущий) или Slave (ведомый). Обмен данными происходит сеансами. "Мастер"-устройство полностью управляет сеансом: инициирует сеанс обмена данными, управляет передачей, подавая тактовые импульсы на линию Clock, и завершает сеанс.

Кроме этого, в зависимости от направления передачи данных и "Мастер" и "Слэйв"-устройства могут быть "Приёмниками" или "Передатчиками". Когда "Мастер" принимает данные от "Слэйва" — он является "Приёмником", а "Слэйв" — "Передатчиком". Когда же "Слэйв" принимает данные от "Мастера", то он уже является "Приёмником", а "Мастер" в этом случае является "Передатчиком".

Не надо путать тип устройства "Мастер" со статусом "Передатчика". Несмотря на то, что при чтении "Мастером" информации из "Слэйва", последний выставляет данные на шину Data, делает он это только тогда, когда "Мастер" ему это разрешит, установкой соответствующего уровня на линии Clock. Так что, хотя "Слэйв" в этом случае и управляет шиной Data, — самим обменом всё равно управляет "Мастер".

В режиме ожидания (когда не идёт сеанс обмена данными) обе сигнальные линии (Data и Clock) находятся в состоянии высокого уровня (притянуты к питанию).

Каждый сеанс обмена начинается с подачи "Мастером" так называемого Start-условия. "Старт-условие" — это изменение уровня на линии Data с высокого на низкий при наличии высокого уровня на линии Clock.

После подачи "Старт-условия" первым делом "Мастер" должен сказать с кем он хочет пообщаться и указать, что именно он хочет — передавать данные в устройство или читать их из него. Для этого он выдаёт на шину 7-ми битный адрес "Слэйв" устройства (по другому говорят: "адресует "Слэйв" устройство"), с которым хочет общаться, и один бит, указывающий направление передачи данных (0 — если от "Мастера" к "Слэйву" и 1 — если от "Слэйва" к "Мастеру"). Первый байт после подачи "Старт"-условия всегда всеми "Слэйвами" воспринимается как адресация.

Поскольку направление передачи данных указывается при открытии сеанса вместе с адресацией устройства, то для того, чтобы изменить это направление, необходимо открывать ещё один сеанс (снова подавать "Старт"-условие, адресовать это же устройство и указывать новое направление передачи).

После того, как "Мастер" скажет, к кому именно он обращается и укажет направление передачи данных, — начинается собственно передача: "Мастер" выдаёт на шину данные для "Слэйва" или получает их от него. Эта часть обмена (какие именно данные и в каком порядке "Мастер" должен выдавать на шину, чтобы устройство его поняло и сделало то, что ему нужно) уже определяется каждым конкретным устройством.

Заканчивается каждый сеанс обмена подачей "Мастером" так называемого Stop-условия, которое заключается в изменении уровня на линии Data с низкого на высокий, опять же при наличии высокого уровня на линии Clock. Если на шине сформировано Stop-условие, то закрываются все открытые сеансы обмена .

Внутри сеанса любые изменения на линии Data при наличии высокого уровня на линии Clock запрещены, поскольку в это время происходит считывание данных "Приёмником". Если такие изменения произойдут, то они в любом случае будут восприняты либо как "Старт"-условие (что вызовет прекращение обмена данными), либо как "Стоп"-условие (что будет означать окончание текущего сеанса обмена). Соответственно, во время сеанса обмена установка данных "Передатчиком" (выставление нужного уровня на линии Data) может происходить
только при низком уровне на линии Clock.

Несколько слов по поводу того, в чём в данном случае разница между "прекращением обмена данными" и "окончанием сеанса обмена". В принципе "Мастеру" разрешается, не закрыв первый сеанс обмена, открыть ещё один или несколько сеансов обмена с этим же (например, как было сказано выше, для изменения направления передачи данных) или даже с другими "Слэйвами", подав новое "Старт"-условие без подачи "Стоп"-условия для закрытия предыдущего сеанса. Управлять линией Data, для того, чтобы отвечать "Мастеру", в этом случае будет разрешено тому устройству, к которому "Мастер" обратился последним, однако старый сеанс при этом нельзя считать законченным. И вот почему. Многие устройства (например те же eeprom-ки 24Схх) для ускорения работы складывают данные, полученные от "Мастера" в буфер, а разбираться с этими полученными данными начинают только после получения сигнала об окончании сеанса обмена (то есть "Стоп-условия").

То есть, например, если на шине висит 2 микросхемы eeprom 24Cxx и вы открыли сеанс записи в одну микросхему и передали ей данные для записи, а потом, не закрывая этот первый сеанс, открыли новый сеанс для записи в другую микросхему, то реальная запись и в первую и во вторую микросхему произойдёт только после формирования на шине "Стоп-условия", которое закроет оба сеанса. После получения данных от "Мастера" eeprom-ка складывает их во внутренний буфер и ждёт окончания сеанса, для того, чтобы начать собственно процесс записи из своего внутреннего буфера непосредственно в eeprom. То есть, если вы после после передачи данных для записи в первую микруху не закрыли этот сеанс, открыли второй сеанс и отправили данные для записи во вторую микруху, а потом, не сформировав "Стоп-условие", выключили питание, то реально данные не запишутся ни в первую микросхему, ни во вторую. Или, например, если вы пишете данные попеременно в две микрухи, то в принципе вы можете открыть один сеанс для записи в первую, потом другой сеанс для записи во вторую, потом третий сеанс для записи опять в первую и т.д., но если вы не будете закрывать эти сеансы, то в конце концов это приведёт к переполнению внутренних буферов и в итоге к потере данных .

Здесь можно привести такую аналогию: ученики в классе ("слэйвы") и учитель ("мастер"). Допустим учитель вызвал какого-то ученика (пусть будет Вася) к доске и попросил его решить какой-то пример. После того как Вася этот пример решил, учитель вызвал к доске Петю и начал спрашивать у него домашнее задание, но Васю на место не отпустил. Вот в этом случае вроде бы разговор с Васей закончен, — учитель разговаривает с Петей, но Вася стоит у доски и не может спокойно заниматься своими делами (сеанс общения с ним не закрыт).

В случае, если "Слэйв" во время сеанса обмена не успевает обрабатывать данные, — он может растягивать процесс обмена, удерживая линию Clock в состоянии низкого уровня, поэтому "Мастер" должен проверять возврат линии Clock к высокому уровню после того, как он её отпустит. Хотелось бы подчеркнуть, что не стоит путать состояние, когда "Слэйв" не успевает принимать или посылать данные, с состоянием, когда он просто занят обработкой данных, полученных в результате сеанса обмена. В первом случае (во время обмена данными) он может растягивать обмен, удерживая линию Clock, а во втором случае (когда сеанс обмена с ним закончен) он никакие линии трогать не имеет права. В последнем случае он просто не будет отвечать на "обращение" к нему от "Мастера".

Внутри сеанса передача состоит из пакетов по девять бит, передаваемых в обычной положительной логике (то есть высокий уровень — это 1, а низкий уровень — это 0). Из них 8 бит передаёт "Передатчик" "Приёмнику", а последний девятый бит передаёт "Приёмник" "Передатчику". Биты в пакете передаются старшим битом вперёд. Последний, девятый бит называется битом подтверждения ACK (от английского слова acknowledge — подтверждение). Он передаётся в инвертированном виде, то есть 0 на линии соответствует наличию бита подтверждения, а 1 — его отсутствию. Бит подтверждения может сигнализировать как об отсутствии или занятости устройства (если он не установился при адресации), так и о том, что "Приёмник" хочет закончить передачу или о том, что команда, посланная "Мастером", не выполнена.

Каждый бит передаётся за один такт. Та половина такта, во время которой на линии Clock установлен низкий уровень, используется для установки бита данных на шину передающим абонентом (если предыдущий бит передавал другой абонент, то он в это время должен отпустить шину данных). Та половина такта, во время которой на линии Clock установлен высокий уровень, используется принимающим абонентом для считывания установленного значения бита с шины данных.

Вот собственно и всё. На рисунках ниже всё это описание показано в графической форме.

3) Диаграммы и тайминги.



Параметр Обозн. Мин.знач.

Которая применила его для организации связи между микросхемами в своих телевизорах. I 2 C (аббревиатура слов Inter-Integrated Circuit), и представляет собой двунаправленную асинхронную шину с последовательной передачей данных. Физически шина I 2 C представляет собой две сигнальные линии, одна из которых (SCL) предназначена для передачи тактового сигнала, а вторая (SDA) для обмена данными. Для управления линиями применяются выходные каскады с открытым коллектором, поэтому линии шины должны быть подтянуты к источнику питания +5 В через резисторы сопротивлением 1...10 кОм, в зависимости от физической длины линий и скорости передачи данных. Длина соединительных линий в стандартном режиме может достигать 2-х метров, скорость передачи данных - 100 кбит/с.

Все абоненты шины делятся на два класса - "Master" и "Slave". Устройство "Master" генерирует тактовый сигнал (SCL) и, как следствие, является ведущим. Оно может самостоятельно выходить на шину и адресовать любое "Slave"-устройство с целью передачи или приёма информации. Все "Slave"-устройства "слушают" шину на предмет обнаружения собственного адреса и, распознав его, выполняют предписываемую операцию. Кроме того, возможен так называемый "MultiMaster"-режим, когда на шине установлено несколько "Master"-абонентов, которые либо совместно разделяют общие "Slave"-устройства, либо попеременно являются то "Master"-устройствами, когда сами инициируют обмен информацией, то "Slave", когда находятся в режиме ожидания обращения от другого "Master"-устройства. Режим "MultiMaster" требует арбитража и распознавания конфликтов. Естественно, он сложнее в реализации (имеется ввиду программная реализация) и, как следствие, реже используется в реальных изделиях.

В начальный момент времени - в режиме ожидания - обе лини SCL и SDA находятся в состоянии лог. 1 (транзистор выходного каскада с открытым коллектором закрыт). В режиме передачи (рисунок 1) бит данных SDA стробируется положительным импульсом SCL. Смена информации на линии SDA производится при нулевом состоянии линии SCL. "Slave"-устройство может "придерживать" линию SCL в нулевом состоянии, например, на время обработки очередного принятого байта, при этом "Master"-устройство обязано дождаться освобождения линии SCL, прежде чем продолжать передачу информации.


Рисунок 1 - Диаграмма процесса передачи данных по шине I 2 C

Для синхронизации пакетов шины I 2 C различают два условия - "START" и "STOP", ограничивающие начало и конец информационного пакета (рисунок 2). Для кодирования этих условий используется изменение состояния линии SDA при единичном состоянии линии SCL, что недопустимо при передаче данных. "START"-условие образуется при отрицательном перепаде линии SDA, когда линия SCL находится в единичном состоянии, и наоборот, "STOP"-условие образуется при положительном перепаде линии SDA при единичном состоянии линии SCL.



Рисунок 2 - Диаграмма "START" / "STOP" условий шины I 2 C

Передача данных начинается по первому положительному импульсу на линии SCL, которым стробируется старший бит первого информационного байта. Каждый информационный байт (8 битов) содержит 9 тактовых периодов линии SCL. В девятом такте устройство-получатель выдаёт подтверждение (ACK ) - отрицательный импульс, свидетельствующий о "взаимопонимании" передатчика и получателя. Следует отметить, что любой абонент шины, как "Master", так и "Slave" может в разные моменты времени быть как передатчиком, так и получателем и в соответствии с режимом обязан либо принимать, либо выдавать сигнал ACK , отсутствие которого интерпретируется как ошибка.

Чтобы начать операцию обмена, устройство "Master" выдаёт на шину "START"-условие, за которым следует байт с адресом "Slave"-устройства (рисунок 3), состоящий из семибитового адреса устройства (биты 1...7) и однобитового флага операции - "R/W " (бит 0), определяющего направление обмена, причём 0 означает передачу от "Master" к "Slave" (рисунок 3а), а 1 - чтение из "Slave" (рисунок 3б). Все биты по шине I 2 C передаются в порядке старший-младший, то есть первым передаётся 7-ой бит, последним 0-ой. За адресом могут следовать один или более информационных байтов (в направлении, определённом флагом R/W ), биты которых стробируются сигналом SCL из "Master"-устройства.

При совершении операции чтения "Master" абонент должен сопровождать прочитанный байт сигналом ACK , если необходимо прочитать следующий байт, и не выдавать сигнал ACK , если собирается закончить чтение пакета (см. рисунок 3б).

Допускается многократное возобновление "Slave"-адреса в одном цикле передачи, то есть передача повторного "START"-условия без предварительного "STOP"-условия (рисунок 3в).



Рисунок 3 - Формат операций чтения/записи

Необходимо отметить некоторые особенности микросхем памяти, работающих по интерфейсу I 2 C, и процедур обмена данными с ними. Во-первых, энергонезависимая память данных этих микросхем разбита на страницы памяти, поэтому при записи байта вначале происходит копирование всей страницы во внутреннюю оперативную память микросхемы, где производится изменение нужной ячейки. После этого, производится стирание старой страницы и запись на её место новой. Ещё одной особенностью является то, что старшие четыре бита адреса "Slave" всегда должны быть равны 1010. Это требование регламентировано самой фирмой Philips.

Теперь рассмотрим процедуры "общения" ведущего с микросхемой памяти. Прежде всего, он обязан сформировать на шине условие "START", вслед за которым послать байт с адресом ведомого и установленным признаком записи. Получив подтверждение приёма, ведущий продолжает передачу, посылая один или два байта адреса (зависит от ёмкости микросхемы) ячейки памяти. Приём каждого из них должен быть подтверждён "Slave"-устройством. В отличие от привычного программистам принятого в IBM PC порядка первым в данном случае передаётся байт со старшими разрядами адреса.

Дальнейшие действия зависят от того, намерен ли ведущий читать данные, хранящиеся в массиве памяти ведомого, или записывать их туда. Для записи одного или нескольких байтов их достаточно передать вслед за адресом. Первый попадёт в заданную ячейку, после чего внутренний контроллер микросхемы памяти автоматически инкрементирует адрес. Поэтому повторять его передачу не требуется. Следующий байт будет направлен в следующую ячейку и так далее до верхней границы страницы записи (в соответствующем числе младших разрядов адреса ячейки - все единицы), после чего заполнение страницы продолжится с нижней границы (в младших разрядах - все нули). Число байт данных, передаваемых в одном сеансе, не ограничено, но сохранятся лишь последние из них в количестве, не превышающем длины страницы.

Страничная запись значительно сокращает время, требуемое для перезаписи всего массива памяти или большей его части, но кроме неё иногда предусматривается и мультибайтная запись, отличие которой состоит в том, что адреса последовательно записываемых ячеек могут находиться на смежных страницах, пересекая их границу.

В любом случае после передачи и подтверждения приёма всех данных для программирования ведущий подаёт команду "STOP", запускающую в микросхеме внутренний автомат записи. Время записи здесь довольно большое - около 10 мс. Если данные переданы в мультибайтном режиме и находятся на разных страницах, продолжительность записи удваивается - автомат программирует две страницы.

До окончания процедуры программирования микросхема памяти не реагирует ни на какие внешние сигналы и в течение этого времени на повторные обращения ведущего по её адресу не откликается. Этим пользуются для определения момента завершения программирования.

Перед чтением данных не требуется обязательно указывать адрес ячейки. Если ведущий обращается к микросхеме памяти, установив в младшем бите байта адреса "Slave" признак чтения, в ответ ему будет передан байт из ячейки, следующей за той, с которой выполнялась последняя операция записи или чтения, после чего счётчик адреса будет автоматически инкрементирован. Продолжая посылать импульсы SCL, ведущий может последовательно и неоднократно прочитать весь массив данных. Возврата к началу страницы на её границе при чтении не происходит, а за адресом последней ячейки всего массива следует нулевой. Сигнал окончания чтения - отсутствие подтверждения ведущим приёма последнего или единственного байта данных и следующая за этим команда "STOP".

При необходимости адрес читаемой ячейки задают в явном виде следующим образом (см. рисунок 3в). Прежде всего, ведущий обращается к микросхеме памяти с признаком записи и посылает ему один или два байта адреса ячейки. Получив подтверждение, он немедленно посылает новую команду "START", а за ней - адрес "Slave" с признаком чтения и выполняет описанную выше процедуру. Первым ему будет передан байт из ячейки с указанным адресом.

Все вышеописанные процедуры обмена данными относятся и к микросхемам часов реального времени, за исключением того, что некоторые ячейки памяти у них представляют собой регистры счётчиков даты времени и, соответственно, изменяются самой микросхемой, хотя ничто не запрещает изменять их и ведущему (так производится установка времени).

Удобства применения шины I 2 C очевидны - малое количество соединительных линий и высокая скорость обмена, простота аппаратной реализации линии связи. Наиболее широко поддерживает шину I 2 C, конечно же, фирма Philips, производящая множество микросхем различной сложности с управлением по I 2 C. В первую очередь, можно выделить микросхемы энергонезависимой памяти (EEPROM) серии 24Схх в 8-ми выводных корпусах, фактически ставшие промышленным стандартом. Из широко распространенных микросхем можно выделить: микросхемы часов DS1307 и DS3231, параллельный порт PCF8574, 4-х канальный 8-ми разрядный АЦП PCF8591.

I 2 C-абоненты жёстко разделяются по классам: "Master"- и "Slave"- устройство. Тот факт, что сигнал SCL всегда генерируется "Master"-устройством означает, что "Master"-абонент может быть достаточно легко реализован чисто программными средствами, так как все изменения на шине будут происходить только по сигналу SCL. И наоборот, реализация "Slave"-устройства требует аппаратной поддержки, кроме случая очень низких скоростей обмена. Существуют однокристальные микроконтроллеры (МК) поддерживающие "Slave"-операции шины I 2 C. Это прежде всего Philips PCF80C552 (652), Microchip PIC16F88 (PIC16F690, PIC18F2620 и др.), Motorola MC68HC705CJ4 (BD3, E5).

Типичная ошибка при реализации программ "Master"-абонента - управление значением порта МК для установки состояний лог. 0 и лог. 1 линий SCL и SDA. Если для МК семейства MCS-51 это нормальный режим работы, так как единичное состояние порта у них реализуется встроенным подтягивающим резистором, то для МК с симметричными портами (Motorola 68HCxx, Microchip PIC, Atmel AVR) это будет порождать электрические конфликты. Например, в руководстве "Microchip. Embedded Control Handbook 1994/1995" приведены практические программы для связи PIC c EEPROM 24Cxx, содержащие подобные грубые ошибки. Положение усугубляется ещё и тем, что в случае микросхем EEPROM такой вариант может сработать, так как они являются 100% аппаратными схемами и не вносят задержек в связной протокол, а паузу ожидания окончания цикла программирования производят переходом в пассивное состояние. Однако использование таких подпрограмм с микросхемами, производящими захват линии SCL (практически любой "Slave"-абонент, реализованный с применением МК), приведёт к невозможности связи, а возможно, и к выходу микросхемы из строя.

Реализовать настоящую имитацию режима "Открытый коллектор" (ОК) (мы назвали этот режим имитацией ОК, так как он не позволяет устанавливать на линии напряжение выше напряжения питания, что было бы нормально для настоящего ОК, но так как по спецификации I 2 C напряжение на линиях SCL и SDA не должно превышать напряжение питания, его вполне законно можно считать выходом с ОК) на порте с симметричным выходом можно, если установить значение порта постоянно в лог. 0, а управлять состоянием линии через манипуляции с регистром направления данных. Для МК семейства PIC это будет регистр "TRISx", переводящий порт либо в третье состояние, либо подключающий линии в соответствии с состоянием регистра "PORTx". Практически так же это реализуется в МК AVR и MC68HC05 (08, 11), где "DDRx" коммутирует порт "PORTx", с той лишь разницей, что у них другая полярность управляющего сигнала - у PIC лог. 0 в "TRISx" соответствует лог. 0 на выходе, а у AVR и MC68HC05 лог. 1 в "DDRx" соответствует лог. 0 на выходе.

Другая важная сторона вопроса - необходимость тщательного соблюдения параметров временной диаграммы процесса обмена. Несмотря на то, что шина I 2 C асинхронная и позволяет затягивать передачу бита (байта) на сколь угодно длительное время (это свойство позволяет реализовывать программы I 2 C-обмена на самом низком уровне приоритета, прерывая процесс передачи в любое время), требования к минимальным значениям длительностей импульсов очень жёсткие. Ситуация усугубляется тем, что положительные перепады состояния линии имеют склонность затягиваться, так как несимметричные управляющие выходы не могут создать крутые положительные фронты.

При написании программ очень важно контролировать время между операциями на шине, реализуемыми различными подпрограммами, например выдача "START" и "STOP"-условия, передача бита, передача байта. При состыковке этих подпрограмм не должны быть нарушены минимальные значения времени, что очень легко происходит при использовании высокоскоростных процессоров (AVR, PIC). Кроме того, необходимо следить, чтобы время между изменением на линии SDA и стробированием положительным импульсом на линии SCL было не меньше половины минимальной длительности полупериода SCL (2,4 мкс для скорости 100 кБит/сек). Помимо этого, некоторые "Slave"-приборы могут ужесточить требования к максимальной частоте обмена, в этом случае необходимо пропорционально снижению частоты обмена увеличивать значения минимумов временных допусков.

Ещё одна распространенная ошибка - игнорирование требования слежения за захватом линии SCL "Slave"-абонентом. Грамотно реализованные прграммы операций "Master"-абонента должны контролировать возврат линии SCL после того, как переводят её в единичное состояние, и только дождавшись реальной установки линии SCL в единичное состояние продолжать операции приемо-передачи.

I 2 C – двухпроводной интерфейс, разработанный корпорацией Philips. В первоначальном техническом требовании к интерфейсу максимальная скорость передачи данных составляла 100 Кбит/с. Однако со временем появились стандарты на более скоростные режимы работы I 2 C. К одной шине I 2 C могут быть подключены устройства с различными скоростями доступа, так как скорость передачи данных определяется тактовым сигналом.

Протокол передачи данных разработан таким образом, чтобы гарантировать надежный прием передаваемых данных.

При передаче данных одно устройство является «Master», которое инициирует передачу данных и формирует сигналы синхронизации. Другое устройство «Slave» - начинает передачу только по команде, пришедшей от «Master».

В микроконтроллерах PIC16CXXX аппаратно реализован режим «Slave» устройства в модуле SSP. Режим «Master» реализуется программно.

Основные термины, используемые при описании работы с шиной I 2 C:

Передатчик – устройство, передающее данные по шине

Приемник – устройство, получающее данные с шины

«Master» - устройство, которое инициирует передачу и формирует тактовый сигнал

«Slave» - устройство, к которому обращается «Master»

Multi-«Master» - режим работы шины I 2 C с более чем одним «Master»

Арбитраж – процедура, гарантирующая, что только один «Master» управляет шиной

Синхронизация – процедура синхронизации тактового сигнала от двух или более устройств

Выходные каскады формирователей сигналов синхронизации (SCL) и данных (SDA) должны быть выполнены по схемам с открытым коллектором (стоком) для объединения нескольких выходов и через внешний резистор подключены к плюсу питания для того, чтобы на шине был уровень «1», когда ни одно устройство не формирует сигнал «0». Максимальная емкостная нагрузка ограничена емкостью 400 пФ.

Инициализация и завершение передачи данных

В то время, когда передача данных на шине отсутствует, сигналы SCL и SDA имеют высокий уровень за счет внешнего резистора.

Сигналы START и STOP формируются «Master» для определения начала и окончания передачи данных соответственно.

Сигнал START формируется переходом сигнала SDA из высокого уровня в низкий при высоком уровне сигнала SCL. Сигнал STOP определяется как переход SDA из низкого уровня в высокий при высоком уровне SCL. Таким образом, при передаче данных сигнал SDA может изменяться только при низком уровне сигнала SCL.

Адресация устройств на шине I 2 C

Для адресации устройств используется два формата адреса:

Простой 7-разрядный формат с битом чтения/записи R/W;

и 10-разрядный формат – в первом байте передается два старших бита адреса и бит записи/чтения, во втором байте передается младшая часть адреса.

Подтверждение приема

При передаче данных после каждого переданного байта приемник должен подтвердить получение байта сигналом ACK.

Если «Slave» не подтверждает получение байта адреса или данных, «Master» должен прервать передачу, сформировав сигнал STOP.

При передаче данных от «Slave» к «Master», «Master» формирует сигналы подтверждения приема данных ACK. Если «Master» не подтвердит приема байта, «Slave» прекращает передачу данных, «отпуская» линию SDA. После этого «Master» может сформировать сигнал STOP.

Для задержки передачи данных «Slave» может установить логический нуль, указывая «Master» о необходимости ожидания. После «отпускания» линии SCL передача данных продолжается.

Передача данных от «Master» к «Slave»

Чтение данных из «Slave»

Использование сигнала повторного START для обращения к «Slave»

Режим Multi-«Master»

Протокол передачи данных I 2 C позволяет иметь более одного «Master» на шине. Для разрешения конфликтов на шине при инициализации передачи используются функции арбитража и синхронизации.

Арбитраж

Арбитраж выполняется на линии SDA при высоком уровне линии SCL. Устройство, которое формирует на линии SDA высокий уровень когда другое передает низкий, теряет право брать «Master» и должно перейти в режим «Slave». «Master», потерявший инициативу на шине, может формировать тактовые импульсы до конца байта, в котором потерял свойства ведущего.

Синхронизация

Синхронизация на шине происходит после выполнения арбитража по отношению к сигналу SCL. При переходе сигнала SCL с высокого уровня в низкий, все заинтересованные устройства начинают отсчитывать длительность низкого уровня. Затем устройства начинают переводить уровень SCL из низкого в высокий согласно требуемой скорости передачи данных. После перехода уровня из низкого в высокое состояние, заинтересованные устройства отсчитывают длительность высокого уровня. Первое устройство, которое переведет сигнал SCL в низкий уровень, определяет параметры тактового сигнала.

Интерфейс I2C (или по другому IIC) — это достаточно широко распространённый сетевой последовательный интерфейс, придуманный фирмой Philips и завоевавший популярность относительно высокой скоростью передачи данных (обычно до 100 кбит/с, в современных микросхемах до 400 кбит/с), дешевизной и простотой реализации.

1) Физика .

Физически сеть представляет собой двухпроводную шину, линии которой называются DATA и CLOCK (необходим ещё и третий провод — земля, но интерфейс принято называть двухпроводным по количеству сигнальных проводов). Соответственно, по линии DATA передаются данные, линия CLOCK служит для тактирования. К шине может быть подключено до 128 абонентов, каждый со своим уникальным номером. В каждый момент времени информация передаётся только одним абонентом и только в одну сторону.

Устройства I2C имеют выход с "открытым коллектором". Когда выходной транзистор закрыт — на соответствующей линии через внешний подтягивающий резистор устанавливается высокий уровень, когда выходной транзистор открыт — он притягивает соответствующую линию к земле и на ней устанавливается низкий уровень (смотрите рисунок). Резисторы имеют номинал от нескольких килоОм до нескольких десятков килоОм (чем выше скорость — тем меньше номинал резисторов, но больше энергопотребление). На рисунке треугольниками на входе показано, что входы высокоомные и, соответственно, влияния на уровни сигналов на линиях они не оказывают, а только "считывают" эти уровни. Обычно используются уровни 5В или 3,3В.

2) Логика .

Любое устройство на шине I2C может быть одного из двух типов: Master (ведущий) или Slave (ведомый). Обмен данными происходит сеансами. "Мастер"-устройство полностью управляет сеансом: инициирует сеанс обмена данными, управляет передачей, подавая тактовые импульсы на линию Clock, и завершает сеанс.

Кроме этого, в зависимости от направления передачи данных и "Мастер" и "Слэйв"-устройства могут быть "Приёмниками" или "Передатчиками". Когда "Мастер" принимает данные от "Слэйва" — он является "Приёмником", а "Слэйв" — "Передатчиком". Когда же "Слэйв" принимает данные от "Мастера", то он уже является "Приёмником", а "Мастер" в этом случае является "Передатчиком".

Не надо путать тип устройства "Мастер" со статусом "Передатчика". Несмотря на то, что при чтении "Мастером" информации из "Слэйва", последний выставляет данные на шину Data, делает он это только тогда, когда "Мастер" ему это разрешит, установкой соответствующего уровня на линии Clock. Так что, хотя "Слэйв" в этом случае и управляет шиной Data, — самим обменом всё равно управляет "Мастер".

В режиме ожидания (когда не идёт сеанс обмена данными) обе сигнальные линии (Data и Clock) находятся в состоянии высокого уровня (притянуты к питанию).

Каждый сеанс обмена начинается с подачи "Мастером" так называемого Start-условия. "Старт-условие" — это изменение уровня на линии Data с высокого на низкий при наличии высокого уровня на линии Clock.

После подачи "Старт-условия" первым делом "Мастер" должен сказать с кем он хочет пообщаться и указать, что именно он хочет — передавать данные в устройство или читать их из него. Для этого он выдаёт на шину 7-ми битный адрес "Слэйв" устройства (по другому говорят: "адресует "Слэйв" устройство"), с которым хочет общаться, и один бит, указывающий направление передачи данных (0 — если от "Мастера" к "Слэйву" и 1 — если от "Слэйва" к "Мастеру"). Первый байт после подачи "Старт"-условия всегда всеми "Слэйвами" воспринимается как адресация.

Поскольку направление передачи данных указывается при открытии сеанса вместе с адресацией устройства, то для того, чтобы изменить это направление, необходимо открывать ещё один сеанс (снова подавать "Старт"-условие, адресовать это же устройство и указывать новое направление передачи).

После того, как "Мастер" скажет, к кому именно он обращается и укажет направление передачи данных, — начинается собственно передача: "Мастер" выдаёт на шину данные для "Слэйва" или получает их от него. Эта часть обмена (какие именно данные и в каком порядке "Мастер" должен выдавать на шину, чтобы устройство его поняло и сделало то, что ему нужно) уже определяется каждым конкретным устройством.

Заканчивается каждый сеанс обмена подачей "Мастером" так называемого Stop-условия, которое заключается в изменении уровня на линии Data с низкого на высокий, опять же при наличии высокого уровня на линии Clock. Если на шине сформировано Stop-условие, то закрываются все открытые сеансы обмена .

Внутри сеанса любые изменения на линии Data при наличии высокого уровня на линии Clock запрещены, поскольку в это время происходит считывание данных "Приёмником". Если такие изменения произойдут, то они в любом случае будут восприняты либо как "Старт"-условие (что вызовет прекращение обмена данными), либо как "Стоп"-условие (что будет означать окончание текущего сеанса обмена). Соответственно, во время сеанса обмена установка данных "Передатчиком" (выставление нужного уровня на линии Data) может происходить
только при низком уровне на линии Clock.

Несколько слов по поводу того, в чём в данном случае разница между "прекращением обмена данными" и "окончанием сеанса обмена". В принципе "Мастеру" разрешается, не закрыв первый сеанс обмена, открыть ещё один или несколько сеансов обмена с этим же (например, как было сказано выше, для изменения направления передачи данных) или даже с другими "Слэйвами", подав новое "Старт"-условие без подачи "Стоп"-условия для закрытия предыдущего сеанса. Управлять линией Data, для того, чтобы отвечать "Мастеру", в этом случае будет разрешено тому устройству, к которому "Мастер" обратился последним, однако старый сеанс при этом нельзя считать законченным. И вот почему. Многие устройства (например те же eeprom-ки 24Схх) для ускорения работы складывают данные, полученные от "Мастера" в буфер, а разбираться с этими полученными данными начинают только после получения сигнала об окончании сеанса обмена (то есть "Стоп-условия").

То есть, например, если на шине висит 2 микросхемы eeprom 24Cxx и вы открыли сеанс записи в одну микросхему и передали ей данные для записи, а потом, не закрывая этот первый сеанс, открыли новый сеанс для записи в другую микросхему, то реальная запись и в первую и во вторую микросхему произойдёт только после формирования на шине "Стоп-условия", которое закроет оба сеанса. После получения данных от "Мастера" eeprom-ка складывает их во внутренний буфер и ждёт окончания сеанса, для того, чтобы начать собственно процесс записи из своего внутреннего буфера непосредственно в eeprom. То есть, если вы после после передачи данных для записи в первую микруху не закрыли этот сеанс, открыли второй сеанс и отправили данные для записи во вторую микруху, а потом, не сформировав "Стоп-условие", выключили питание, то реально данные не запишутся ни в первую микросхему, ни во вторую. Или, например, если вы пишете данные попеременно в две микрухи, то в принципе вы можете открыть один сеанс для записи в первую, потом другой сеанс для записи во вторую, потом третий сеанс для записи опять в первую и т.д., но если вы не будете закрывать эти сеансы, то в конце концов это приведёт к переполнению внутренних буферов и в итоге к потере данных .

Здесь можно привести такую аналогию: ученики в классе ("слэйвы") и учитель ("мастер"). Допустим учитель вызвал какого-то ученика (пусть будет Вася) к доске и попросил его решить какой-то пример. После того как Вася этот пример решил, учитель вызвал к доске Петю и начал спрашивать у него домашнее задание, но Васю на место не отпустил. Вот в этом случае вроде бы разговор с Васей закончен, — учитель разговаривает с Петей, но Вася стоит у доски и не может спокойно заниматься своими делами (сеанс общения с ним не закрыт).

В случае, если "Слэйв" во время сеанса обмена не успевает обрабатывать данные, — он может растягивать процесс обмена, удерживая линию Clock в состоянии низкого уровня, поэтому "Мастер" должен проверять возврат линии Clock к высокому уровню после того, как он её отпустит. Хотелось бы подчеркнуть, что не стоит путать состояние, когда "Слэйв" не успевает принимать или посылать данные, с состоянием, когда он просто занят обработкой данных, полученных в результате сеанса обмена. В первом случае (во время обмена данными) он может растягивать обмен, удерживая линию Clock, а во втором случае (когда сеанс обмена с ним закончен) он никакие линии трогать не имеет права. В последнем случае он просто не будет отвечать на "обращение" к нему от "Мастера".

Внутри сеанса передача состоит из пакетов по девять бит, передаваемых в обычной положительной логике (то есть высокий уровень — это 1, а низкий уровень — это 0). Из них 8 бит передаёт "Передатчик" "Приёмнику", а последний девятый бит передаёт "Приёмник" "Передатчику". Биты в пакете передаются старшим битом вперёд. Последний, девятый бит называется битом подтверждения ACK (от английского слова acknowledge — подтверждение). Он передаётся в инвертированном виде, то есть 0 на линии соответствует наличию бита подтверждения, а 1 — его отсутствию. Бит подтверждения может сигнализировать как об отсутствии или занятости устройства (если он не установился при адресации), так и о том, что "Приёмник" хочет закончить передачу или о том, что команда, посланная "Мастером", не выполнена.

Каждый бит передаётся за один такт. Та половина такта, во время которой на линии Clock установлен низкий уровень, используется для установки бита данных на шину передающим абонентом (если предыдущий бит передавал другой абонент, то он в это время должен отпустить шину данных). Та половина такта, во время которой на линии Clock установлен высокий уровень, используется принимающим абонентом для считывания установленного значения бита с шины данных.

Вот собственно и всё. На рисунках ниже всё это описание показано в графической форме.

3) Диаграммы и тайминги.



Параметр Обозн. Мин.знач.

С номиналами от 10 Ом до 1 МОм);

  • 2 резистора по 4,7 кОм (из того же набора);
  • соединительные провода (например, вот хороший набор);
  • компьютер с Arduino IDE.
  • 1 Описание интерфейса I2C

    Последовательный протокол обмена данными IIC (также называемый I2C - Inter-Integrated Circuits, межмикросхемное соединение) использует для передачи данных две двунаправленные линии связи, которые называются шина последовательных данных SDA (Serial Data) и шина тактирования SCL (Serial Clock) . Также имеются две линии для питания. Шины SDA и SCL подтягиваются к шине питания через резисторы.

    В сети есть хотя бы одно ведущее устройство (Master) , которое инициализирует передачу данных и генерирует сигналы синхронизации. В сети также есть ведомые устройства (Slave) , которые передают данные по запросу ведущего. У каждого ведомого устройства есть уникальный адрес, по которому ведущий и обращается к нему. Адрес устройства указывается в паспорте (datasheet). К одной шине I2C может быть подключено до 127 устройств, в том числе несколько ведущих. К шине можно подключать устройства в процессе работы, т.е. она поддерживает «горячее подключение».

    Давайте рассмотрим временную диаграмму обмена по протоколу I2C. Есть несколько различающихся вариантов, рассмотрим один из распространённых. Воспользуемся логическим анализатором, подключённым к шинам SCL и SDA.

    Мастер инициирует обмен. Для этого он начинает генерировать тактовые импульсы и посылает их по линии SCL пачкой из 9-ти штук. Одновременно на линии данных SDA он выставляет адрес устройства , с которым необходимо установить связь, которые тактируются первыми 7-ми тактовыми импульсами (отсюда ограничение на диапазон адресов: 2 7 = 128 минус нулевой адрес). Следующий бит посылки - это код операции (чтение или запись) и ещё один бит - бит подтверждения (ACK), что ведомое устройство приняло запрос. Если бит подтверждения не пришёл, на этом обмен заканчивается. Или мастер продолжает посылать повторные запросы.

    Это проиллюстрировано на рисунке ниже.. В первом случае, для примера, отключим ведомое устройство от шины. Видно, что мастер пытается установить связь с устройством с адресом 0x27, но не получает подтверждения (NAK). Обмен заканчивается.


    Теперь подключим к шине I2C ведомое устройство и повторим операцию. Ситуация изменилась. На первый пакет с адресом пришло подтверждение (ACK) от ведомого. Обмен продолжился. Информация передаётся также 9-битовыми посылками, но теперь 8 битов занимают данные и 1 бит - бит подтверждения получения ведомым каждого байта данных. Если в какой-то момент связь оборвётся и бит подтверждения не придёт, мастер прекратит передачу.

    2 Реализация I2C в Arduino

    Arduino использует для работы по интерфейсу I2C два порта. Например, в Arduino UNO и Arduino Nano аналоговый порт A4 соответствует SDA, аналоговый порт A5 соответствует SCL.


    Для других моделей плат соответствие выводов такое:

    3 Библиотека "Wire" для работы с IIC

    Для облегчения обмена данными с устройствами по шине I2C для Arduino написана стандартная библиотека Wire . Она имеет следующие функции:

    Функция Назначение
    begin(address) инициализация библиотеки и подключение к шине I2C; если не указан адрес, то присоединённое устройство считается ведущим; используется 7-битная адресация;
    requestFrom() используется ведущим устройством для запроса определённого количества байтов от ведомого;
    beginTransmission(address) начало передачи данных к ведомому устройству по определённому адресу;
    endTransmission() прекращение передачи данных ведомому;
    write() запись данных от ведомого в ответ на запрос;
    available() возвращает количество байт информации, доступных для приёма от ведомого;
    read() чтение байта, переданного от ведомого ведущему или от ведущего ведомому;
    onReceive() указывает на функцию, которая должна быть вызвана, когда ведомое устройство получит передачу от ведущего;
    onRequest() указывает на функцию, которая должна быть вызвана, когда ведущее устройство получит передачу от ведомого.

    4 Подключение I2C устройства к Arduino

    Давайте посмотрим, как работать с шиной I2C с помощью Arduino.

    Сначала соберём схему, как на рисунке. Будем управлять яркостью светодиода, используя цифровой 64-позиционный потенциометр AD5171 (см. техническое описание), который подключается к шине I2C. Адрес, по которому мы будем обращаться к потенциометру - 0x2c (44 в десятичной системе).


    5 Управление устройством по шине IIC

    Рассмотрим диаграммы информационного обмена с цифровым потенциометром AD5171, представленные в техническом описании:


    Нас тут интересует диаграмма записи данных в регистр RDAC . Этот регистр используется для управления сопротивлением потенциометра.

    Откроем из примеров библиотеки "Wire" скетч: Файл Образцы Wire digital_potentiometer . Загрузим его в память Arduino.

    #include // подключаем библиотеку "Wire" byte val = 0; // значение для передачи потенциометру void setup() { Wire.begin(); // подключаемся к шине I2C как мастер } void loop() { Wire.beginTransmission(44); // начинаем обмен с устройством с I2C адресом "44" (0x2C) Wire.write(byte(0x00)); // посылаем инструкцию записи в регистр RDAC Wire.write(val); // задаём положение 64-позиционного потенциометра Wire.endTransmission(); // завершаем I2C передачу val++; // инкрементируем val на 1 if (val == 63) { // по достижении максимума потенциометра val = 0; // сбрасываем val } delay(500); }

    После включения вы видите, как яркость светодиода циклически нарастает, а потом гаснет. При этом мы управляем потенциометром с помощью Arduino по шине I2C.