Как отличить резистор от терморезистора. Что такое термистор его применение в электронике. Элемент в цепи размагничивания

Сегодня поговорим о других наиболее распространенных радиодеталях, таких как транзисторы, терморезисторы, герконы и другие.

Терморезисторы

Терморезисторы — это полупроводниковые приборы, которые меняют свое сопротивление в зависимости от температуры. Терморезисторы подразделяются на два типа:

NTC c отрицательным температурным коэффициентом ) — сопротивление термистора уменьшается с увеличением температуры. Нашли широкое применение в различных областях радиоэлектроники, особенно там, где важен контроль за температурой. PTC с положительным температурным коэффициентом ) — сопротивление позистора увеличивается с уменьшением температуры. В отличии от термисторов на данный момент встречаются гораздо реже. Пожалуй классический пример применения позисторов — телевизоры с электро-лучевой трубкой, где они выполняют роль стабилизирующих нагревательных элементов в схемах размагничивания кинескопа.

Методика проверки термисторов и позисторов одинаковая. Нам понадобится мультиметр и нагревательный прибор, фен или паяльник. На мультиметре выставляем режим омметра и подключаем его щупы к выводам терморезистора. Запоминаем значение сопротивления. После этого начинаем нагревать терморезистор, значение сопротивления в зависимости от типа (PTC или NTC) будет увеличиваться или уменьшаться пропорционально нагреву. Это свидетельствует об исправности радиоэлемента. Если же сопротивление не меняется или изначально близко к 0 — значит деталь неисправна.

Герконы относятся к классу магнитоуправляемых коммутационных устройств, само слово «геркон» это сокращение от герметезированный контакт. Представляет из себя стеклянную колбу с встроенной в нее контактной группой. Контакты выполнены из ферромагнитного материала, их срабатывание происходит под действием магнитного поля. В этом качестве может выступать обычный магнит. Часто встречаются в различных датчиках, системах охранной сигнализации.

Проверить геркон элементарно, для этого понадобится мультиметр и магнит. Тестер выставляем на прозвонку и подключаем к щупам геркон. На дисплее значение будет 1 — то есть наш контакт разомкнут. Подносим магнит к геркону — контакт замыкается и мультиметр издает звуковой сигнал. Значит геркон в порядке.

Датчик Холла

Датчики Холла по своему назначению схожи с герконами, то есть являются магнитоуправляемыми устройствами, но в отличии от них являются не электромеханическими, а электронными. Главное их преимущество перед герконом в отсутствии механических контактов, а следовательно долговечности. Применяются в первую очередь как бесконтактные датчики.

Для проверки датчика вполне достаточно обычного мультиметра и источника питания постоянного тока. Любой датчик Холла имеет три вывода — плюсовой, общий и сигнальный. Плюсовой вывод обычно первый, если смотреть со стороны маркировки, средний — общий и третий сигнальный. Значит подключаем наш источник питания плюсом на первый вывод и минусом на средний. Теперь берем тестер, переводим в режим измерения постоянного тока и подключаем плюсовой щуп на первый вывод, а минусовой на третий сигнальный вывод. Мультиметр должен показывать напряжение, близкое к нулю. Теперь подносим к нашему датчику магнит и напряжение должно возрасти до значения близкого к значению напряжения источника питания. Это говорит о том, что датчик Холла исправен.

Транзисторы

В электронике в основном встречаются транзисторы трех типов —

  • биполярные
  • полевые

Биполярный транзистор среди всех пожалуй наиболее распространен. По своей структуре его можно сравнить с двумя диодами, так как он имеет два p-n перехода, а структура диода представляет собой обычный p-n переход. Общая точка соединения называется базой , а крайние – коллектор и эмиттер . В зависимости от типа биполярный транзистор может быть прямой проводимости p-n-p или обратной n-p-n . Транзистор p-n-p структуры можно представить как два диода, направленных катодами друг к другу, а у n-p-n структуры соответственно базой будут соединены аноды.

Получается, что биполярный транзистор можно проверить на исправность точно так же как диоды, в прямом направлении падение напряжения на переходе будет равно какому-то значению, а в обратном направлении должно стремиться к бесконечности. Давайте убедимся в этом.

Берем какой-нибудь транзистор, узнаем его распиновку, или как говорят цоколевку. Другими словами выясняем какие выводы у него будут базой, коллектором и эмиттером. Теперь берем мультиметр и выставляем его в режим проверки диодов. Если транзистор попался n-p-n структуры, значит красный (+) щуп подключаем к базе, а черный (-) к коллектору. На дисплее должна отображаться величина, соответствующая падению напряжения на переходе. Далее плюсовой щуп оставляем на базе, а черный подключаем к выводу эмиттера. На дисплее также должно отображаться какое либо значение. Теперь проверяем переход база-эмиттер и база-коллектор в обратном направлении. В обоих случаях на дисплее значение должно быть близко к бесконечности, то есть 1.

Если транзистор попался p-n-p структуры, то методика проверки точно такая же, только к базе подключаем минусовой щуп, а плюсовой поочередно подключаем к коллектору и эмиттеру.

Если мультиметр при проверки в прямом и обратном направлении какого либо перехода показывает бесконечность в обе стороны — значит переход находится в обрыве и такой транзистор неисправен. Если же значение при проверке одного из переходов близко или равно 0 — это однозначно говорит о пробое перехода и такой транзистор также является неисправным.

Полевые транзисторы отличаются по своему принципу действия от биполярных, поэтому и методика их проверки будет немного отличаться. Главное отличие полевых транзисторов от биполярных — управление выходным током происходит благодаря изменению приложенного электрического поля, то есть напряжения, тогда как у биполярных выходным током управляет входной ток базы. По своей структуре они разделяются на транзисторы с управляющим p-n переходом (J-FET ) и транзисторы с изолированным затвором (MOSFET ).

Также как и биполярные полевые транзисторы имеют три вывода — сток (область, куда стекаются носители), исток (источник носителей тока), затвор (управляющий электрод). Перед проверкой в первую очередь необходимо выяснить структуру транзистора и какой вывод за что отвечает.

Ну а дальше берем мультиметр и выставляем его в режим проверки диодов. Черным минусовым щупом прикасаемся к стоку, а красным плюсовым касаемся истока. Мультиметр покажет падение напряжения на переходе 0,5 - 0,8 В. В обратном направлении прибор покажет бесконечность. Далее черный щуп оставляем на стоке, а красным касаемся затвора и вновь возвращаем его на исток. Мультиметр должен показать близкое к нулю значение, так как транзистор открылся. При смене полярности величина не должна изменяться. Теперь черный щуп кратковременно подключим на затвор и снова вернем его на вывод стока, при этом красный щуп оставляем на истоке. Полевой транзистор должен закрыться и мультиметр будет снова показывать падение напряжения на переходе. такова методика проверки n-канального транзистора. Для p-канального все будет точно также, просто меняем полярность.

Ну и наконец IGBT транзисторы. Это некий гибрид биполярных и полевых транзисторов, о чем свидетельствует даже его название (IGBT биполярный транзистор с изолированным затвором ). Применяются такие транзисторы в первую очередь в силовой электронике в качестве мощных электронных ключей. Например их часто можно встретить в сварочных инверторах. Можно сказать что в IGBT транзисторе полевой транзистор малой мощности способен управлять мощным биполярным. В сочетании быстродействия полевого транзистора и мощности биполярного и заключается основное преимущество IGBT транзисторов.

Так же как и в случае с другими типами транзисторов перед проверкой IGBT необходимо выяснить назначение его выводов. У IGBT транзистора вывод затвора обозначается буквой G – Gate , вывод эмиттера E –Emitter и вывод коллектора С – Collector . Ну а далее начинаем проверку с помощью мультиметра. Красный щуп ставим на затвор, черный на эмиттер. Мультиметр должен показывать бесконечность. При смене полярности результат должен быть таким же. Далее черный ставим на коллектор, а красный на эмиттер. На дисплее должна отображаться 1, то есть бесконечность. При смене полярности, при наличии в транзисторе шунтирующего диода, мультиметр покажет величину падения напряжения на диоде, если диод отсутствует то прибор будет показывать бесконечность.

В некоторых случаях напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда понадобится источник постоянного напряжения в 9-15 В.

Неприхотливость и относительная физическая устойчивость позисторов позволяет их использовать в роли датчика для автостабилизирующихся систем, а также реализовать защиту от перегрузки. Принцип работы этих элементов заключается в том, что их сопротивление увеличивается при нагреве (в отличие от термисторов, где оно уменьшается). Соответственно, при проверке тестером или мультиметром позисторов на работоспособность, необходимо учитывать температурную корреляцию.

Определяем характеристики по маркировке

Широкая сфера применения РТС-термисторов подразумевает их обширный ассортимент, поскольку характеристики этих устройств должны соответствовать различным условиям эксплуатации. В связи с этим для тестирования очень важно определить серию элемента, в этом нам поможет маркировка.

Для примера возьмем радиокомпонент С831, его фотография показана ниже. Посмотрим, что можно определить по надписям на корпусе детали.


Учитывая надпись «РТС», можно констатировать, что данный элемент является позистором «С831». Сформировав запрос в поисковике (например, «РТС С831 datasheet»), находим спецификацию (даташит). Из нее мы узнаем наименование (B59831-C135-A70) и серию (B598*1) детали, а также основные параметры (см. рис. 3) и назначение. Последнее указывает, что элемент может играть роль самовосстанавливающегося предохранителя, защищающего схему от КЗ (short-circuit protection) и перегрузки (overcurrent).

Расшифровка основных характеристик

Кратко рассмотрим, данные приведенные в таблице на рисунке 3 (для удобства строки пронумерованы).


Рисунок 3. Таблица с основными характеристиками серии B598*1

Краткое описание:

  1. значение, характеризующее максимальный уровень рабочего напряжения при нагреве устройства до 60°С, в данном случае он соответствует 265 В. Учитывая, что нет определения DC/AC, можно констатировать, что элемент работает как с переменным, так и постоянным напряжением.
  2. Номинальный уровень, то есть напряжение в штатном режиме работы – 230 вольт.
  3. Расчетное число гарантированных производителем циклов срабатывания элемента, в нашем случае их 100.
  4. Значение, описывающее величину опорной температуры, после достижения которой происходит существенное увеличение уровня сопротивления. Для наглядности приведем график (см. рис. 4) температурной корреляции.

Рис. 4. Зависимость сопротивления от температуры, красным выделена точка температурного перехода (опорная температура) для С831

Как видно на графике, R резко возрастает в диапазоне от 130°С до 170°С, соответственно, опорной температурой будет 130°C.

  1. Соответствие номинальному значению R (то есть допуск), указывается в процентном соотношении, а именно 25%.
  2. Диапазон рабочей температуры для минимального (от -40°С до 125°С) и максимального (0-60°С) напряжения.

Расшифровка спецификации конкретной модели

Это были основные параметры серии, теперь рассмотрим спецификацию для С831 (см. рис. 5).


Краткая расшифровка:

  1. Величина тока для штатного режима работы, для нашей детали это почти половина ампера, а именно 470 мА (0,47 А).
  2. Этот параметр указывает ток, при котором величина сопротивления начинает существенно меняться в большую сторону. То есть, когда через С831 протекает ток с силой 970 мА, срабатывает «защита» устройства. Следует заметить, что этот параметр связан с точкой температурного перехода, поскольку проходящий ток приводит к разогреву элемента.
  3. Максимально допустимая величина тока для перехода в «защитный» режим, для С831 это 7 А. Обратите внимание, что в графе указано максимальное напряжение, следовательно, можно рассчитать допустимую величину мощности рассеивания, превышение которой с большой вероятностью приведет к разрушению детали.
  4. Время срабатывания, для С831 при напряжении 265 вольт и токе 7 ампер оно составит менее 8 секунд.
  5. Величина остаточного тока, необходимого для поддерживания защитного режима рассматриваемой радиодетали, она 0,02 А. Из этого следует, что на удержание сработавшего состояния требуется мощность 5,3 Вт (I r x V max).
  6. Сопротивление устройства при температуре 25°С (3,7 Ом для нашей модели). Отметим, с измерения мультиметром этого параметра начинается проверка позистора на исправность.
  7. Величина минимального сопротивления, у модели С831 это 2,6 Ом. Для полноты картины, еще раз приведем график температурной зависимости, где будут отмечены номинальное и минимальное значение R (см. рис. 6).

Рисунок 6. График температурной корреляции для B59831, значения RN и Rmin отмечены красным

Обратите внимание, что на начальном этапе нагрева радиодетали ее параметр R незначительно уменьшается, то есть в определенном диапазоне температур у нашей модели начинают проявляться NTS свойства. Эта особенность, в той или иной мере, характерна для всех позисторов.

  1. Полное наименование модели (у нас B59831-C135-A70), данная информация может быть полезной для поиска аналогов.

Теперь, зная спецификацию, можно переходить к проверке на работоспособность.

Определение исправности по внешнему виду

В отличие от других радиодеталей (например, таких как транзистор или диод), вышедший из строя РТС-резистор часто можно определить по внешнему виду. Это связано с тем, что вследствие превышения допустимой мощности рассеивания нарушается целостность корпуса. Обнаружив на плате позистор с таким отклонением от нормы, можно смело выпаивать его и начинать поиск замены, не утруждая себя процедурой проверки мультиметром.

Если внешний осмотр не дал результата, приступаем к тестированию.

Пошаговая инструкция проверки позистора мультиметром

Для процесса тестирования, помимо измерительного прибора, потребуется паяльник. Подготовив все необходимое, начинаем действовать в следующем порядке:

  1. Подключаем тестируемую деталь к мультиметру. Желательно, чтобы прибор был оснащен «крокодилами», в противном случае припаиваем к выводам элемента проволоку и накручиваем ее на разные иглы щупов.
  2. Включаем режим измерения наименьшего сопротивления (200 Ом). Прибор покажет номинальную величину R, характерную для тестируемой модели (как правило, менее одного-двух десятков Ом). Если показание отличается от спецификации (с учетом погрешности), можно констатировать неисправность радиокомпонента.
  3. Аккуратно нагреваем корпус тестируемой детали при помощи паяльника, величина R начнет резко увеличиваться. Если она осталась неизменной, элемент необходимо менять.
  4. Отключаем мультиметр от тестируемой детали, даем ей остыть, после чего повторяем действия, описанные в пунктах 1 и 2. Если сопротивление вернулось к номинальному значению, то радиокомпонент с большой долей вероятности можно признать исправным.

Часто в различных источниках питания возникает задача ограничить стартовый бросок тока при включении. Причины могут быть разные – быстрый износ контактов реле или выключателей, сокращение срока службы конденсаторов фильтра итд. Такая задача недавно возникла и у меня. В компьютере я использую неплохой серверный блок питания, но за счет неудачной реализации секции дежурного режима, происходит сильный ее перегрев при отключении основного питания. Из-за этой проблемы уже 2 раза пришлось ремонтировать плату дежурного режима и менять часть электролитов, находящихся рядом с ней. Решение было простое – выключать блок питания из розетки. Но оно имело ряд минусов – при включении происходил сильный бросок тока через высоковольтный конденсатор, что могло вывести его из строя, кроме того, уже через 2 недели начала обгорать вилка питания блока. Решено было сделать ограничитель бросков тока. Параллельно с этой задачей, у меня была подобная задача и для мощных аудио усилителей. Проблемы в усилителях те же самые – обгорание контактов выключателя, бросок тока через диоды моста и электролиты фильтра. В интернете можно найти достаточно много схем ограничителей бросков тока. Но для конкретной задачи они могут иметь ряд недостатков – необходимость пересчета элементов схемы для нужного тока; для мощных потребителей – подбор силовых элементов, обеспечивающих необходимые параметры для расчетной выделяемой мощности. Кроме того, иногда нужно обеспечить минимальный стартовый ток для подключаемого устройства, из-за чего сложность такой схемы возрастает. Для решения этой задачи есть простое и надежное решение – термисторы.

Рис.1 Термистор

Термистор – это полупроводниковый резистор, сопротивление которого резко изменяется при нагреве. Для наших целей нужны термисторы с отрицательным температурным коэффициентом – NTC термисторы. При протекании тока через NTC термистор он нагревается и его сопротивление падает.


Рис.2 ТКС термистора

Нас интересуют следующие параметры термистора:

    Сопротивление при 25˚С

    Максимальный установившийся ток

Оба параметра есть в документации на конкретные термисторы. По первому параметру мы можем определить минимальный ток, который пройдет через сопротивление нагрузки при подключении ее через термистор. Второй параметр определяется максимальной рассеиваемой мощностью термистора и мощность нагрузки должна быть такой, что бы средний ток через термистор не превысил это значение. Для надежной работы термистора нужно брать значение этого тока меньшее на 20 процентов от параметра, указанного в документации. Казалось бы, что проще – подобрать нужный термистор и собрать устройство. Но нужно учитывать некоторые моменты:

  1. Термистор достаточно долго остывает. Если выключить устройство и сразу включить опять, то термистор будет иметь низкое сопротивление и не выполнит свою защитную функцию.
  2. Нельзя соединять термисторы параллельно для увеличения тока – из-за разброса параметров ток через них будет сильно различаться. Но вполне можно соединять нужное к-во термисторов последовательно.
  3. При работе происходит сильный нагрев термистора. Греются также элементы рядом с ним.
  4. Максимальный установившийся ток через термистор должен ограничиваться его максимальной мощностью. Этот параметр указан в документации. Но если термистор используется для ограничения коротких бросков тока (например, при первоначальном включении блока питания и зарядке конденсатора фильтра), то импульсный ток может быть больше. Тогда выбор термистора ограничен его максимальной импульсной мощностью.

Энергия заряженного конденсатора определяется формулой:

E = (C*Vpeak²)/2

где E – энергия в джоулях, C – емкость конденсатора фильтра, Vpeak – максимальное напряжение, до которого зарядится конденсатор фильтра (для наших сетей можно взять значение 250В*√2 = 353В).

Если в документации указана максимальная импульсная мощность, то исходя из этого параметра можно подобрать термистор. Но, как правило, этот параметр не указан. Тогда максимальную емкость, которую безопасно можно зарядить термистором, можно прикинуть по уже рассчитанным таблицам для термисторов стандартных серий.

Я взял таблицу с параметрами термисторов NTC фирмы Joyin. В таблице указаны:

Rном - номинальное сопротивление термистора при температуре 25°С

Iмакс - максимальный ток через термистор (максимальный установившийся ток)

Смакс - максимальная емкость в тестовой схеме, которую разряжают на термистор без его повреждения (тестовое напряжение 350v)

Как проводится тестовое испытание, можно посмотреть на седьмой странице.

Несколько слов о параметре Смакс – в документации показано, что в тестовой схеме конденсатор разряжается через термистор и ограничительный резистор, на котором выделяется дополнительная энергия. Поэтому максимальная безопасная емкость, которую сможет зарядить термистор без такого сопротивления, будет меньше. Я поискал информацию в зарубежных тематических форумах и посмотрел типовые схемы с ограничителями в виде термисторов, на которые приведены данные. Исходя из этой информации, можно взять коэффициент для Смакс в реальной схеме 0.65, на который умножить данные из таблицы.

Наименование

Rном,

Iмакс,

Смакс,

д иаметр 8мм

диаметр 10мм

диаметр 13мм

диаметр 15мм

диаметр 20мм

Таблица параметров NTC термисторов фирмы Joyin

Соединяя несколько одинаковых NTC термисторов последовательно, мы уменьшаем требования к максимальной импульсной энергии каждого из них.

Приведу пример. Например, нам необходимо подобрать термистор для включения блока питания компьютера. Максимальная мощность потребления компьютера – 700 ватт. Мы хотим ограничить стартовый ток величиной 2-2.5А. В блоке питания установлен конденсатор фильтра 470мкФ.

Считаем действующее значение тока:

I = 700Вт/220В = 3.18А

Как писал выше, для надежной работы термистора, выберем максимальный установившийся ток из документации на 20% больше этой величины.

Iмакс = 3.8А

Считаем нужное сопротивление термистора для стартового тока 2.5А

R = (220В*√2)/2.5А = 124 Ом

Из таблицы находим нужные термисторы. 6 штук последовательно включенных термисторов JNR15S200L подходят нам по Iмакс , общему сопротивлению. Максимальная емкость, которую они могут зарядить будет равна 680мкФ*6*0.65=2652мкФ, что даже больше, чем нам нужно. Естественно, при понижении Vpeak , понижаются и требования к максимальной импульсной мощности термистора. Зависимость у нас от квадрата напряжения.

И последний вопрос по поводу выбора термисторов. Что, если мы подобрали необходимые по максимальной импульсной мощности термисторы, но они нам не подходят по Iмакс (постоянная нагрузка для них слишком велика), либо в самом устройстве нам не нужен источник постоянного нагрева? Для этого мы применим простое решение – добавим в схему еще один выключатель параллельно термистору, который включим после зарядки конденсатора. Что я и сделал в своем ограничителе. В моем случае параметры такие – максимальная мощность потребления компьютера 400вт, ограничение стартового тока – 3.5А, конденсатор фильтра 470мкФ. Я взял 6 штук термисторов 15d11 (15 ом). Схема приведена ниже.


Рис. 3 Схема ограничителя

Пояснения по схеме. SA1 отключает фазовый провод. Светодиод VD2 служит для индикации работы ограничителя. Конденсатор C1 сглаживает пульсации и светодиод не мерцает с частотой сети. Если он вам не нужен, то уберите из схемы C1, VD6, VD1 и просто соедините параллельно светодиод и диод по аналогии элементов VD4, VD5. Для индикации процесса зарядки конденсатора, параллельно термисторам включен светодиод VD4. В моем случае при зарядке конденсатора блока питания компьютера, весь процесс занимает менее секунды. Итак, собираем.


Рис.4 Набор для сборки

Индикацию питания я собрал непосредственно в крышке от выключателя, выкинув из нее китайскую лампу накаливания, которая бы прослужила недолго.


Рис. 5 Индикация питания


Рис.6 Блок термисторов


Рис. 7 Собранный ограничитель

На этом можно было бы закончить, если бы через неделю работы не вышли из строя все термисторы. Выглядело это так.


Рис. 8 Выход из строя NTC термисторов

Несмотря на то, что запас по допустимой величине емкости был очень большой – 330мкФ*6*0.65=1287мкФ.

Термисторы брал в одной известной фирме, причем разных номиналов – все брак. Производитель неизвестен. Либо китайцы заливают в большие корпуса термисторы меньших диаметров, либо качество материалов очень плохое. В итоге купил даже меньшего диаметра - SCK 152 8мм. То же Китай, но уже фирменные. По нашей таблице допустимая емкость 100мкФ*6*0.65=390мкФ, что даже немного меньше, чем нужно. Тем не менее, все работает отлично.

Узнайте о термисторах и о том, как запрограммировать Arduino для измерения их данных.

Вы когда-нибудь задумывались над тем, как некоторые устройства, такие как термостаты, нагревательные площадки 3D принтеров, автомобильные двигатели и печи измеряют температуру? В этой статье вы можете это узнать!

Знать температуру может быть очень полезно. Знание температуры может помочь регулировать температуру в помещении до комфортного значения, гарантировать, что нагревательная площадка 3D принтера была достаточно горячей, чтобы такие материалы, как ABS, прилипали к ее поверхности, а также предотвратить перегрев двигателя или не допустить сжигания приготавливаемой еды.

В данной статье мы рассматриваем только один тип датчика, способного измерять температуру. Этот датчик называется термистором.

Термистор обладает сопротивлением, которое намного сильнее зависит от температуры, чем сопротивление других типов резисторов.

Мы буде использовать Arduino для измерения и обработки показаний термистора, после чего мы преобразуем эти показания в удобный для чтения формат единиц измерения температуры.

Ниже приведена фотография термистора, который мы собираемся использовать:

Необходимые компоненты

Комплектующие

  • Arduino (Mega или Uno или любая другая модель);
  • несколько перемычек;
  • паяльник и припой (возможно, понадобится, если ваш термистор не будет влезать в разъемы на плате Arduino).

Программное обеспечение

  • Arduino IDE

Теория

При типовом использовании резистора вы не хотите, чтобы его сопротивление менялось при изменении температуры. Это не реально в реальной жизни, можно лишь обеспечить небольшое изменение сопротивления при большом изменении температуры. Если бы это было не так, то резисторы странно влияли бы на работу схем, например, светодиод мог бы светиться намного ярче или тусклее по мере изменения температуры окружающей среды.

Но что, если вы действительно хотите, чтобы яркость светодиода была функцией температуры? Здесь появляется термистор. Как вы могли догадаться, у термистора сопротивление сильно изменяется при небольшом изменении температуры. Чтобы проиллюстрировать это, ниже приведена кривая изменения сопротивления термистора:

На рисунке показаны лишь единицы измерения без фактических значений, так как диапазон сопротивлений зависит от типа конкретного термистора. Как вы можете заметить, по мере увеличения температуры сопротивление терморезистора уменьшается. Это является отличительным свойством резистора с отрицательным температурным коэффициентом (Negative Temperature Coefficient), или, кратко, NTC термистора.

Существуют также терморезисторы с положительным температурным коэффициентом (Positive Temperature Coefficient, PTC), сопротивление которых увеличивается по мере роста температуры. Однако, PTC термисторы имеют своего рода точку перелома и сильно меняют сопротивление при некоторой температуре. Это делает взаимодействие с PTC термисторами чуть более сложным. По этой причине в большинстве дешевых измерителей температуры предпочтительнее использовать NTC термисторы.

В оставшейся части статьи, как вы можете догадаться, мы будем говорить о терморезисторах типа NTC.

Четыре подхода к нахождению формулы для построения кривой

Теперь, когда мы лучше понимаем поведение термисторов, вы можете удивиться, как мы можем использовать Arduino для измерения температуры. Кривая на графике выше нелинейна и, следовательно, простое линейное уравнение нам не подходит (на самом деле мы можем вывести уравнение, но об этом позже).

Так что же делать?

Прежде чем продолжить, подумайте, как бы вы это сделали на Arduino или даже в схеме без микропроцессорных компонентов.

Существует несколько способов решения этой проблемы, которые перечислены ниже. Это далеко не полный список всех методик, но он покажет вам некоторые популярные подходы.

Метод 1

Некоторые производители предоставляют настолько полную информацию, что в ней содержится весь график, отображающий определенные диапазоны целочисленных значений температуры и сопротивления (типовые значения). Один такой термистор может быть найден в техническом описании от компании Vishay .

Как, имея такие подробные данные, можно было бы реализовать измерение температуры на Arduino. Вам нужно было бы жестко прописать в коде все эти значения в огромной таблице поиска или очень длинных структурах управления " switch...case " или " if...else ".

А если производитель не удосужился предоставить подробную таблицу, то вам придется самостоятельно измерить каждую точку для формирования такой таблицы. Этот день будет для программиста довольно уныл. Но этот метод не так уж и плох и имеет место в использовании. Если текущий проект проверяет лишь несколько точе или даже небольшой диапазон, этот способ может быть предпочтительным. Например, одна такая ситуация возникает, если вы хотите измерить, находятся ли значения выбранных диапазонах температур, и зажечь светодиод для индикации этого состояния.

Но в нашем проекте мы хотим измерять температуру в почти непрерывном диапазоне и отправлять показания на монитор последовательного порта, поэтому этот метод использовать не будем.

Метод 2

Вы можете попытаться «линеаризовать» реакцию термистора, добавив к нему дополнительную схему.

Одним из популярных способов выполнения этого является подключение резистора параллельно термистору. Некоторые микросхемы предлагают сделать это за вас.

Определение того, как выбрать и линеаризовать участок кривой, вместе с выбором правильного номинала резистора - это тема для отдельной статьи. Этот подход хорош, если микропроцессор не может вычислять выражения с плавающей запятой (например, PICAXE), поскольку он упрощает реакцию в некотором диапазоне температур до линейного характера. Это также упрощает проектирование схемы, в которой нет микропроцессора.

Но у нас в этой статье микропроцессор используется, и мы хотим измерять температуру во всем диапазоне.

Метод 3

Вы можете взять данные из таблицы в техническом описании или (если нравятся извращения) сформировать собственную таблицу, выполнив самостоятельные измерения и воссоздав график в чем-то типа Excel. Затем вы можете использовать функцию подгонки кривой для создания формулы этой кривой. Это неплохая идея, и вся выполненная работа даст красивую формулу, которую вы сможете использовать в программе. Но это займет некоторое время для предварительной обработки данных.

Хотя это разумный подход, мы не хотим зависеть от анализа всех этих данных. Кроме того, каждый термистор немного отличается (но, конечно, это не проблема, если допуск довольно низок).

Метод 4

Оказывается, есть общая формула для подгонки кривой, предназначенная для устройств типа термисторов. Она называется уравнением Штейнхарта-Харта. Ниже представлена его версия (в других версиях используются члены во второй и степени):

\[\frac{1}{T}=A+B\ln(R)+C(\ln(R))^3\]

где R - сопротивление терморезистора при температуре T (в Кельвинах).

Это общее уравнение кривой, подходящее для всех типов NTC термисторов. Аппроксимация связи температуры и сопротивления «достаточно подходит» для большинства применений.

Обратите внимание, что уравнение нуждается в константах A, B и C. Для разных термисторов они различаются и должны быть либо заданы, либо вычислены. Поскольку мы имеем три неизвестных, вам необходимо выполнить три измерения сопротивления при определенных температурах, которые затем могут быть использованы для создания трех уравнений и определения значений этих констант.

Даже для тех из нас, кто хорошо знают алгебру, это всё еще слишком трудоемко.

Вместо этого, есть еще более простое уравнение, которое менее точно, но содержит только одну константу. Эта константа обозначена как β, и поэтому уравнение называется β-уравнением.

\[\frac{1}{T}=\frac{1}{T_o}+(\frac{1}{\beta})\cdot\ln\left(\frac{R}{R_o}\right)\]

где R 0 - сопротивление при контрольной температуре T 0 (например, сопротивление при комнатной температуре). R - сопротивление при температуре T. Температуры указываются в Кельвинах. β обычно указывается в техническом описании; а если нет, то вам необходимо только одно измерение (одно уравнение) для расчета этой константы. Это уравнение я буду использовать для взаимодействия с нашим термистором, поскольку оно является самым простым из тех, с которыми я столкнулся, и не нуждается в линеаризации реакции термистора.

Измерение сопротивления с помощью Arduino

Теперь, когда мы выбрали метод построения кривой, мы должны выяснить, как реально измерить сопротивление с помощью Arduino, прежде чем мы сможем передать информацию о сопротивлении в β-уравнение. Мы можем сделать это используя делитель напряжения:

Это будет наша схема взаимодействия с термистором. Когда термистор определит изменение температуры, это отразится на выходном напряжении.

Теперь, как обычно, мы используем формулу для делителя напряжения.

Но нам неинтересно выходное напряжение V выход, нас интересует сопротивление термистора R термистор. Поэтому мы выразим его:

Это намного лучше, но нам необходимо измерить наше выходное напряжение, а также напряжение питания. Так как мы используем встроенный АЦП Arduino, то можем представить напряжение, как числовое значение на определенной шкале. Итак, конечный вид нашего уравнения показан ниже:

Это работает потому, что не имеет значения, как мы представляем напряжение (в вольтах или в цифровых единицах), эти единицы сокращаются в числителе и знаменателе дроби, оставляя безразмерное значение. Затем мы умножаем его на сопротивление, чтобы получить результат в омах.

D max у нас будет равно 1023, так как это самое большое число, которое может выдать наш 10-разрядный АЦП. D измеренное - это измеренное значение аналого-цифровым преобразователем, которое может быть в диапазоне от нуля до 1023.

Всё! Теперь можно приступить к сборке!

Соберем это

Я использовал термистор TH10K.

Также я использовал резистор 10 кОм в качестве R баланс в нашем делителе напряжения. Константы β у меня не было, поэтому я рассчитал ее сам.

Ниже приведена полная схема устройства. Она довольно проста.

А так выглядит конечный макет:

Код программы для Arduino

Код снабжен большим количеством комментариев, чтобы помочь вам понять логику программы.

В основном он измеряет напряжение на делителе, вычисляет температуру, а затем показывает ее в терминале последовательного порта.

Для забавы добавлены также некоторые операторы " if...else ", чтобы показать, как вы можете действовать в зависимости от диапазона температур.

//=============================================================================== // Константы //=============================================================================== // Связанные с термистором: /* Здесь у нас несколько констант, которые упрощают редактирование кода. Пройдемся по ним. Чтение из АЦП может дать одно значение при одной выборке, а затем немного отличающееся значение при следующей выборке. Чтобы избежать влияния шумов, мы можем считывать значения с вывода АЦП несколько раз, а затем усреднять значения, чтобы получить более постоянное значение. Эта константа используется в функции readThermistor. */ const int SAMPLE_NUMBER = 10; /* Чтобы использовать бета уравнение, мы должны знать номинал второго резистора в нашем делителе. Если вы используете резистор с большим допуском, например, 5% или даже 1%, измерьте его и поместите результат в омах сюда. */ const double BALANCE_RESISTOR = 9710.0; // Это помогает вычислять сопротивление термистора (подробности смотрите в статье). const double MAX_ADC = 1023.0; /* Эта константа зависит от термистора и должна быть в техническом описании, или смотрите статью, как рассчитать ее, используя бета-уравнение. */ const double BETA = 3974.0; /* Необходима для уравнения преобразования в качестве "типовой" комнатной температуры. */ const double ROOM_TEMP = 298.15; // комнатная температура в Кельвинах /* Термисторы обладают типовым сопротивлением при комнатной температуре, укажем его здесь. Опять же, необходимо для уравнения преобразования. */ const double RESISTOR_ROOM_TEMP = 10000.0; //=============================================================================== // Переменные //=============================================================================== // Здесь мы будем хранить текущую температуру double currentTemperature = 0; //=============================================================================== // Объявления выводов //=============================================================================== // Входы: int thermistorPin = 0; // Вход АЦП, выход делителя напряжения //=============================================================================== // Инициализация //=============================================================================== void setup() { // Установить скорость порта для отправки сообщений Serial.begin(9600); } //=============================================================================== // Основной цикл //=============================================================================== void loop() { /* Основной цикл довольно прост, он печатает температуру в монитор последовательного порта. Сердце программы находится в функции readThermistor. */ currentTemperature = readThermistor(); delay(3000); /* Здесь описываем, что делать, если температура слишком высока, слишком низка или идеально подходит. */ if (currentTemperature > 21.0 && currentTemperature < 24.0) { Serial.print("It is "); Serial.print(currentTemperature); Serial.println("C. Ahhh, very nice temperature."); } else if (currentTemperature >= 24.0) { Serial.print("It is "); Serial.print(currentTemperature); Serial.println("C. I feel like a hot tamale!"); } else { Serial.print("It is "); Serial.print(currentTemperature); Serial.println("C. Brrrrrr, it"s COLD!"); } } //=============================================================================== // Функции //=============================================================================== ///////////////////////////// ////// readThermistor /////// ///////////////////////////// /* Эта функция считывает значения с аналогового вывода, как показано ниже. Преобразует входное напряжение в цифровое представление с помощью аналого-цифрового преобразования. Однако, это выполняется несколько раз, чтобы мы могли усреднить значение, чтобы избежать ошибок измерения. Это усредненное значение затем используется для расчета сопротивления термистора. После этого сопротивление используется для расчета температуры термистора. Наконец, температура преобразуется в градусы Цельсия. */ double readThermistor() { // переменные double rThermistor = 0; // Хранит значение сопротивления термистора double tKelvin = 0; // Хранит рассчитанную температуру double tCelsius = 0; // Хранит температуру в градусах Цельсия double adcAverage = 0; // Хранит среднее значение напряжения int adcSamples; // Массив для хранения отдельных результатов // измерений напряжения /* Рассчитать среднее сопротивление термистора: Как упоминалось выше, мы будем считывать значения АЦП несколько раз, чтобы получить массив выборок. Небольшая задержка используется для корректной работы функции analogRead. */ for (int i = 0; i < SAMPLE_NUMBER; i++) { adcSamples[i] = analogRead(thermistorPin); // прочитать значение на выводе и сохранить delay(10); // ждем 10 миллисекунд } /* Затем мы просто усредняем все эти выборки для "сглаживания" измерений. */ for (int i = 0; i < SAMPLE_NUMBER; i++) { adcAverage += adcSamples[i]; // складываем все выборки. . . } adcAverage /= SAMPLE_NUMBER; // . . . усредняем их с помощью деления /* Здесь мы рассчитываем сопротивление термистора, используя уравнение, описываемое в статье. */ rThermistor = BALANCE_RESISTOR * ((MAX_ADC / adcAverage) - 1); /* Здесь используется бета-уравнение, но оно отличается от того, что описывалось в статье. Не беспокойтесь! Оно было перестроено, чтобы получить более "красивую" формулу. Попробуйте сами упростить уравнение, чтобы поупражняться в алгебре. Или просто используйте показанное здесь или то, что приведено в статье. В любом случае всё будет работать! */ tKelvin = (BETA * ROOM_TEMP) / (BETA + (ROOM_TEMP * log(rThermistor / RESISTOR_ROOM_TEMP))); /* Я буду использовать градусы Цельсия для отображения температуры. Я сделал это, чтобы увидеть типовую комнатную температуру, которая составляет 25 градусов Цельсия. */ tCelsius = tKelvin - 273.15; // преобразовать кельвины в цельсии return tCelsius; // вернуть температуру в градусах Цельсия }

Возможные следующие шаги

Всё в данной статье показывает довольно простой способ измерения температуры с помощью дешевого термистора. Есть еще пара способов улучшить схему:

  • добавить небольшой конденсатор параллельно выходу делителя. Это стабилизирует напряжение и может даже устранить необходимость усреднения большого количества выборок (как было сделано в коде) - или, по крайней мере, мы сможете усреднять меньшее количество выборок;
  • использовать прецизионные резисторы (допуск меньше 1%), чтобы получить более предсказуемые измерения. Если вам критична точность измерений, имейте в виду, что самонагревание термистора может повлиять на измерения; в данной статье самонагрев не компенсируется.

Конечно, термисторы - это только один из датчиков, используемых для измерения температуры. Другой популярный выбор - это микросхемы датчиков (пример работы с одной из них описан ). В этом случае вам не придется иметь дело с линеаризацией и сложными уравнениями. Два других варианта - это термопара и инфракрасный тип датчика; последний может измерять температуру без физического контакта, но он уже не так дешев.

Надеюсь, статья оказалась полезной. Оставляйте комментарии!

анод - это положительный электрод. катод - это отрицательный электрод.

Как проверить Диод?

Мультиметр — режим прозвонки (или диодной прозвонки).

Если нету можно мерить сопротивление на минимальном режиме. Если ток должен течь — сопротивление будет нулевым (условно, т.к. Прибор может не показывать настолько малых сопротивлений) или близким к этому.

У диода катод отмечен полоской.

на анод плюс, на катод минус — ток должен протекать (диод звонится, цепь замкнута).

На анод минус, на катод плюс — ток не течет (цепь должна быть разомкнута) другими словами цепь не звонится.

как проверить Варистор?

Чтобы проверить варистор нужно измерять сопротивление. У исправного варистора очень большое сопротивление. У неисправного маленькое. На вид должен также выглядеть целым.

Как проверить Термистор?

термисторы бывают:

NTC — отрицательный температурный коэффициент — это значит, что с ростом температуры уменьшается сопротивление термистора.

PTC — положительный температурный коэффициент — это значит, что с ростом температуры увеличивается сопротивление термистора.

проверка:

мультиметр в режим измерения сопротивления.Щупы мультиметра подключать без учета цвета, полярности… Греть паяльником термистор.

При нагреве должно происходить плавное изменение сопротивления. В какую сторону — зависит от типа термистора. NTC — падает сопротивление, PTC — сопротивление растет.

Варианты неисправностей:

  • Если обрыв на термисторе — сопротивление бесконечное.
  • Если коротко замкнутый термистор — сопротивление равно нулю. Всегда.

также Термистор не исправен, если:

  • нет никаких изменений при нагреве или остывании
  • показания сопротивления изменяются не плавно

Как проверить трансформатор?

Трансформаторы проверяют на целостность обмоток — прозванивают.

Как проверить конденсатор?

на вид — вспухший верх цилиндрика или раскрытый — это сдохший конденсатор.

У меня было множество случаев, когда конденсатор выглядевший исправным и «проверенный» мультиметром (найдете в интернете как) выводил из строя остальные конденсаторы. Кроме того вы не знаете при проверке мультиметром конденсатора на сколько конденсатор не исправен:

  • Сколько он запасает емкости?
  • Каково реактивное сопротивление?
  • Как быстро он разряжается?

чтобы реально проверять конденсаторы вам нужен LCR измеритель.